วันพุธที่ 23 มกราคม พ.ศ. 2556

ตัวเหนี่ยวนำไฟฟ้า (inductor)


ตัวเหนี่ยวนำไฟฟ้า (inductor)

ตัวเหนี่ยวนําไฟฟ้า
ภาษาอังกฤษเรียกว่า inductor
ตัวเหนี่ยวนําเป็นอุปกรณ์ไฟฟ้าที่มีคุณสมบัตินําไฟฟ้ากระแสตรงแต่กั้นไฟฟ้ากระแสสลับเกิดจากโครงสร้างของตัวเหนี่ยนําเป็นขดลวดตัวนําพันรอบแกนที่ทําจากสารแต่ละชนิดจะทําให้ความเหนี่ยวนําไฟฟ้าของตัวเหนี่ยวนําเพิ่มขึ้นหรือลดลงเช่นแกนเหล็กอ่อนจะทําให้ความเหนี่ยวนําเพิ่มขึ้นจากแกนอากาศประมาณ800เท่าเป็นต้น ค่าความเหนี่ยวนําไฟฟ้าที่มากขึ้นจะทําให้สามารถสกัดกั้นไฟฟ้ากระแสสลับได้มาก
สําหรับตัวเหนี่ยวนําขดลวดวงแหวนค่าความเหนี่ยวนําหาได้จากความสัมพันธ์
L = (u N^2 A)/l
เป็นค่าอํานาจการเรียงตัวของสนามแม่เหล็กในโมเลกุลของวัสดุที่ใช้ทําแกนมีหน่วยเป็นวีเบอร์ต่อแอมแปร์เมตร หรือแอมแปร์ต่อตารางเมตร N เป็นจํานวนรอบที่พันรอบแกนมีหน่วยเป็นรอบ เป็นพื้นที่หน้าตัดขวางของแกนขดลวดมีหน่วยเป็นตารางเมตร l เป็นเส้นรอบวงของวงแหวนมีหน่วยเป็น เมตร
เมื่อมีกระแสไฟฟ้าใหลเข้าตัวเหนี่ยวนํากระแสไฟฟ้าจะเข้าไปตามขดลวดทําให้เกิดอํานาจแม่เหล็กเพิ่มขึ้นจาก 0 ตัด
กับขดลวด ทําให้เกิดแรงเคลื่อนไฟฟ้าต่อต้านกับแรงเคลื่อนไฟฟ้าที่ทําให้เกิดกระแสไฟฟ้าเดิม เกิดการหักล้างกัน ทํา
ให้กระแสไฟฟ้าค่อยเพิ่มขึ้นจนสูงสุด มีอํานาจแม่เหล็กสูงสุดมีค่าคงที่เมื่ออํานาจแม่เหล็กคงที่ก็จะไม่มีอํานาจ
แม่เหล็กเพิ่มหรือลดตัดกับขดลวดอีกแรงเคลื่อนไฟฟ้าเหนี่ยวนําต่อต้านจะหายไปทําให้กระแสไฟฟ้าใหลผ่านขดลวด
สูงสุด นั่นคือตัวเหนี่ยวนําทําให้กระแสไฟฟ้าตรงใหลผ่านตัวเหนี่ยวนําได้ดี

ถ้าป้อนไฟฟ้ากระแสสลับที่มีความถี่สูงกว่าที่จะทําให้มีอํานาจแม่เหล็กสูงสุดได้แรงเคลื่อนไฟฟ้าต่อต้าน
กับแรงเคลื่อนไฟฟ้าเดิม จะคงมีอยู่ตลอดทําให้ตัวเหนี่ยวนํามีความต้านทานต่อกระแสไฟฟ้าสลับ ตามความ
สัมพันธ์
Xl = 2 pi f L
เมื่อXl เป็นความต้านทานต่อกระแสไฟฟ้าสลับมีหน่วยเป็นโอห์ม
pi เป็นค่าคงที่=3.14
f เป็นความถี่ของไฟฟ้ากระแสสลับมีหน่วยเป็นเฮิร์ต
L เป็นค่าความเหนี่ยวนําตนเอง มีหน่วยเป็น เฮนรี่
ถ้าความถี่ของไฟฟ้ากระแสสลับสูงขึ้นแรงเคลื่อนไฟฟ้าต่อต้านจะมีค่ามากเพราะถ้าเวลายาวออกไปแรงเคลื่อนไฟฟ้า
ต่านต้านจะลดลง ตามการลดลงของการเปลี่ยนแปลงของอํานาจแม่เหล็ก นั่นคือทําให้ตัวเหนี่ยวนํามีความต้านทาน
ต่อไฟฟ้ากระแสสลับมากขึ้น

จากรูปใช้LEDเป็นตัวแสดงว่ามีกระแสไฟฟ้าผ่านตัวเหนี่ยวนําจึงทําให้LEDสว่างได้
ผลการทดลอง
ตัวเหนี่ยวนําขนาด40ไมโครฟาราดLEDสว่างน้อยไม่สว่าง
สรุปผลการทดลอง
ความสว่างของLEDแสดงว่ามีใหลผ่านตัวเหนี่ยวนําความสว่างของ LED เมื่อใช้ไฟฟ้ากระแสสลับสว่างมากกว่าสว่าง
น้อยกว่าเมื่อใช้ไฟฟ้ากระแสตรง
ตัวเหนี่ยวนํา ( Inductor )
ตัวเหนี่ยวนํา เป็นอุปกรณ์ชิ้นส่วนทางอิเล็กทรอนิกส์ชนิดหนึ่ง ที่ประกอบอยู่ในวงจรเครื่องรับ-ส่ง
วิทยุ วงจรเครื่องรับโทรทัศน์ วงจรเลือกความถี่ และวงจรอื่นๆที่อาศัยหลักการเหนี่ยวนํา บางครั้งอาจเรียกตัว
อินดัคเตอร์ว่า “คอยล์” หรือ “แอล” แทนก็ได้โดยลักษณะโครสร้างของอุปกรณ์ประเภทนี้ คือ การเอาลวดตัวนํา
ทองแดงมาพันเป็นขดจํานวนหลายๆรอบบนแกนอากาศซึ่งขดลวดทองแดงนี้จะแสดงคุณสมบัติเป็นตัวเหนี่ยวนํา
ทางไฟฟ้าได้ก็ต่อเมื่อมีกระแสไฟฟ้าไหลผ่านตัวมัน
การเหนี่ยวนําในตัวเอง
  เมื่อเราจ่ายกระแสไฟฟ้าให้ไหลเข้าไปในเส้นลวดตัวนําจะปรากฎว่ามีเส้นแรงแม่เหล็กเกิดขึ้นที่รอบๆเส้นลวดตัวนํา และมีทิศทางตามกฎมือซ้ายถ้าเรานําเอาลวดมาขดเป็นคอยล์เพื่อให้เกิดคุณสมบัติของตัวนําโดยต่อจากแหล่งจ่ายไฟ กระแสตรงแล้วใช้กฎมือซ้าย ซึ่งจะบอกให้เราทราบว่านิ้วหัวแม่มือซ้ายจะแสดง ทิศทางของสนามแม่เหล็กขั้วเหนือ ของขดลวดและจํานวนนิ้วที่เหลือทั้ง4 นิ้ว ที่กํารอบขดลวดจะเป็นทิศทางการไหลของกระแสอิเล็กตรอน
หน่วยของค่าความเหนี่ยวนํา
  หน่วยที่ใช้ในการวัดค่าความเหนี่ยวนําคือเฮนรี่ซึ่งได้ชื่อนักฟิสิกส์ชาวอเมริกาคือ ท่านโยเซฟ เฮนรี่ เป็นผู้ทําการ ทดลองเรื่องแรงดันไฟฟ้าเหนี่ยวนําค่าความเหนี่ยวนํา1เฮนรี่ คือเมือมีกระแสไฟฟ้าไหลเข้าไปในขดลวดตัวนํา เปลี่ยนแปลง 1 แอมป์/วินาที ทําให้เกิดแรงเคลื่อนไฟฟ้าเหนี่ยวนํา 1 โวลท์
การเหนี่ยวนําระหว่างขดลวด 2 ขด
เมื่อเรานําขดลวด2ขดมาวางไว้ใกล้กันแล้วจ่ายกระแสไฟฟ้าให้แก่ขดลวดตัวนําขดหนึ่งจะพบว่าเมื่อกระแส ไฟฟ้าเปลี่ยนแปลงย่อมจะทําให้เส้นแม่เหล็กเปลี่ยนแปลงและสามารถยุบตัวตัดกับขดลวดตัวนําอีกตัวหนึ่งที่วางอยู่ ใกล้ ได้ซึ่งจะทําให้เกิดแรงเคลื่อนไฟฟ้าเหนี่ยวนําตกคร่อมที่ขดลวดตัวนําทั้งสอง เรียกว่า เกิดการเหนี่ยวนําการต่อตัว เหนี่ยวนําแบบอันดับ ค่าอินดัคแตนซ์รวมของวงจรจะเท่ากัน ค่าอินดัคแตนซท์ของตัวเหนี่ยวนําแต่ละตัวรวมกันการต่อตัวเหนี่ยวนําแบบขนาน ค่าอินดัคแตนซ์รวมจะมีค่าน้อยเท่ากับตัวเหนี่ยวนําที่มีค่าอินดัคแตนซ์ที่น้อยที่สุดในวงจร
 
ชนิดของตัวเหนี่ยวนํา
1)โช้คคอยล์คือเส้นลวดทองแดงอาบน้ํายาเคลือบฉนวนพันเป็นคอยล์เพื่อใช้ในการ กรองกระแส หรือ การเชื่อมต่อ
วงจรต่างๆซึ่งสามารถแบ่งตามชนิดของแกนได้ดังต่อไปนี้
1.1) โช้คแกนเหล็ก เป็นตัวเหนี่ยวนําที่มีค่าความเหนี่ยวนําสูงมาก
1.2) โช้คแกนอากาศ คือ ตัวเหนี่ยวนําที่ใช้ในย่านความถี่วิทยุ
1.3) โช้คแกนผงเหล็กอัด เป็น R.F Chock อีกชนิดหนึ่งแต่งจะใช้แกนผงเหล็กอัดแทนแกน อากาศซึ่งจะทําให้มีค่า
ความเหนี่ยวนําได้ปานกลาง
2 ทานส์ฟอร์เมอร์ เป็นขดลวดตัวนําตั้งแต่ 2 ขดขึ้นไปพันอยู่บนแกนเดียวกันโดยจะมีขดทาง ด้านอินพุทเรียกว่า ขดปฐมภูมิ และขดทางเอาร์พุทเรียกว่า ขดทุติยภูมิ การใช้งานของ ทรานส์ฟอร์เมอร์ จะใช้เป็นตัวเชื่อมตต่อระหว่างวงจร หรือใช้ในการเพิ่ม-ลด ระดับของ แรงเคลื่อนไฟฟ้า ซึ่งงเราสามารถแบ่งทรานส์ฟอร์เมอร์ตามชนิดของแกนได้ดังนี้
2.1) ทรานส์ฟอร์เมอร์ชนิดแกนเหล็ก จะใช้กับงานทางด้านความถี่ต่ํา
2.2) ทรานส์ฟอร์เมอร์ชนิดแกนผงเหล็กอัด หรือเฟอร์ไรท์ ส่วนมากจะใช้งานในวงจรขยายภาค ไอ.เอฟ
2.3) ทรานส์ฟอร์เมอร์ชนิดแกนอากาศ คือขดลวด 2 ขด พันอยู่บนฉนวนแกนอากาศซึ่งนําไปใช้งานในย่านควมถี่สูง รูปแสดงการต่อแหล่งจ่ายแรงดันไฟฟ้าคร่อมเข้ากับขดลวด เป็นผลทําให้มีกระแสไฟฟ้าไหลผ่านขดลวด ซึ่ง กระแสไฟฟ้านี้จะทําให้เกิดสนามแม่เหล็ก และความเข้มของสนามแม่เหล็ก จะเพิ่มขึ้นจากค่าศูนย์ไปจนถึงค่าสูงสุด
ในช่วงเวลาสั้นๆ โดยการขยายตัวของสนามแม่เหล็กไฟฟ้า จะเริ่มจากส่วนกลางของลวดตัวนํา ซึ่งการขยายตัวของ เส้นแรงแม่เหล็กนี้จะเป็นการเคลื่อนที่ตัดกับตัวนําที่อยู่กับที่ ดังนั้น จึงส่งผลให้เกิดแรงดันไฟฟ้าเหนี่ยวนําขึ้น (การ เหนี่ยวนําของสนามแม่เหล็กไฟฟ้า) การที่กระแสไฟฟ้าไหลผ่านลวดตัวนําแล้วทําให้เกิดแรงดันไฟฟ้าเหนี่ยวนํา
ภายในนี้ เรียกว่า การเหนี่ยวนําภายใน (Self Inductance)

  รูป แสดงการต่อตัวเหนี่ยวนําคร่อมอยู่กับแหล่งจ่ายไฟฟ้ากระแสตรง เมื่อปิดสวิตช์ กระแสไฟฟ้าในวงจรจะไหลผ่าน ตัวเหนี่ยวนํา และตัวต้านทานที่ต่ออันดับอยู่ ถ้าปริมาณกระแสไฟฟ้าเพิ่มขึ้นจนถึงค่าสูงสุดก็จะทําให้สนามแม่เหล็ก เกิดการขยายตัว และตลอดเวลาที่มีการเคลื่อนที่ตัดกันระหว่างสนามแม่เหล็กกับตัวเหนี่ยวนําก็จะทําให้เกิด แรงดันไฟฟ้าเหนี่ยวนําขึ้น แรงดันไฟฟ้าเหนี่ยวนําที่เกิดขึ้นนี้ จะทําให้เกิดกระแสไฟฟ้าเหนี่ยวนําที่ จะคอยต่านการเปลี่ยนแปลง ของกระแสไฟฟ้าภายในวงจรโดยค่าความเหนี่ยวนําของ ตัวเหนี่ยวนํา 1 เฮนรี่ หมายถึง การเปลี่ยนแปลงของปริมาณกระแสไฟฟ้า 1 แอมแปร์/วินาที ทําให้เกิดแรงดันไฟฟ้าเหนี่ยวนํา 1 โวลต์ ดังนั้น ค่าความเหนี่ยวนําจึงเป็นการแสดงว่า Counter EMF (แรงดันไฟฟ้าเหนี่ยวนํา) ที่เกิดจากตัวเหนี่ยวนําจะมีปริมาณเท่าไร
สําหรับการเปลี่ยนแปลงของกระแสไฟฟ้าที่ไหลผ่านตัวเหนี่ยวนําเดียวกัน สูตรคํานวณแรงดันไฟฟ้าเหนี่ยวนํา หรือ Counter EMF เป็นดังนี้

สรุป การเปลี่ยนแปลงของกระแสไฟฟ้าในขดลวด ถ้าเกิดขึ้นอย่างรวดเร็วจะทําให้แรงดันไฟฟ้าเหนี่ยวนําเกิน เมื่อกระแสไฟฟ้าเพิ่มขึ้นจนถึงค่าสูงสุดจะทําให้สนามแม่เหล็กซึ่งจะมีปริมาณมากหรือน้อย ขึ้นอยู่กับปริมาณ กระแสไฟฟ้าก็ถึงค่าสูงสุดด้วย และทําให้สนามแม่เหล็กไฟฟ้า ไม่เกิดการขยายตัว อีกต่อไปโดยจะรักษาระดับให้ คงที่ไว้เมื่อกระแสไฟฟ้าคงที่แล้วการเปลี่ยนแปลงของสนามแม่เหล็กจึงไม่เกิดขึ้น ดังนั้น การเคลื่อนที่ตัดกันระหว่างตัวเหนี่ยวนําและสนามแม่เหล็กที่ทําให้เกิดแรงดันไฟฟ้าเหนี่ยวนําจึงไม่เกิดขึ้น และสุดท้าย กระแสไฟฟ้าเหนี่ยวนําที่ จะไปต้านการไหลของกระแสไฟฟ้าในวงจร ก็จะไม่เกิดขึ้นด้วยเช่นกัน ดังแสดงในรูป (ข) ขดลวดจะรับพลังงาน
ไฟฟ้า และเก็บไว้ในรูปของพลังงานสนามแม่เหล็ก เช่นเดียวกับกรณีที่ตัวเก็บประจุ ที่เก็บพลังงานไฟฟ้าในรูปของ สนามไฟฟ้านั่นเองถ้าปรับสวิตช์ไปที่ตําแหน่ง B ดังแสดงในรูป (ค) กระแสไฟฟ้าที่ไหลมาจากแบตเตอรี่จะมีค่าเท่ากับศูนย์และทําให้สนามแม่เหล็กยุบตัวลงมา ทั้งนี้เนื่องจาก ไม่มีกระแสไฟฟ้าไหลผ่านในวงจรจึง ไม่ทําให้เกิดสนามแม่เหล็กอีกต่อไป และถึงแม่เส้นแรงแม่เหล็กจะยุบตัวลงมา แต่ก็ยังเป็นการเคลื่อนที่ตัดกับขดลวดตัวนําอยู่(เป็นเหตุให้มีการเคลื่อนที่ตัดกันระหว่างตัวเหนี่ยวนํา และสนามแม่เหล็ก) ส่งผลให้เกิดแรงดันไฟฟ้าเหนี่ยวนําเกิดขึ้นในขดลวด ซึ่งผลที่ตามมาก็คือ เกิดกระแสไฟฟ้าเหนี่ยวนํา ที่จะไหลไปในทิศทางเดียวกันกับกระแสไฟฟ้าของวงจรซึ่งไหลอยู่ก่อนหน้านี้แล้ว (ก่อนหน้าที่สวิตช์จะเป็ดวงจร) ขดลวดในขณะนี้จะเปลี่ยนพลังงานสนามแม่เหล็กไปเป็นพลังงานไฟฟ้า และคืนพลังงานที่เก็บสะสมไว้ในตอนแรกออกมา หลังจากเวลาผ่านไปสนามแม่เหล็กก็จะยุบตัวหมด แรงดันไฟฟ้าเหนี่ยวนําก็จะกลายเป็นศูนย์ และกระแสไฟฟ้าเหนี่ยวนําภายในวงจรก็จะไม่เกิดขึ้นอีก

แรงดันไฟฟ้าเหนี่ยวนําที่เกิดขึ้นในขดลวดนี้เรียกว่า Counter Electromotive Force (Counter EMF หรือ Back EMF)ซึ่งจะทําหน้าที่ต้านทานแรงดันไฟฟ้าที่จ่ายออกมาจากแบตเตอรี่และความสามารถของขดลวดหรือตัวเหนี่ยวนําที่ทําให้เกิด Counter EMF ขึ้นภายในซึ่งเกิดจากการเปลี่ยนแปลงของกระแสไฟฟ้าเรียกว่า Self-Inductance หรือที่นิยมเรียก คือ ความเหนี่ยวนํา (Inductance, L) และมีหน่วยเป็น เฮนรี่ (H)
การแบ่งชนิดของตัวเหนี่ยวนํา สามารถแบ่งได้เช่นเดียวกับการแบ่งชนิดของตัวต้านทานและตัวเก็บประจุ นั่นคือ ตัวเหนี่ยวนําชนิดค่าคงที่ และตัวเหนี่ยวนําชนิดปรับค่าได้ โดยมีสัญลักษณ์ดังแสดงในรูป (ก) และ (ข) ตามลําดับ
นอกจากการแบ่งตัวเหนี่ยวนําออกเป็น 2 ชนิดใหญ่ๆ นี้แล้ว ตัวเหนี่ยวนํายังสามารถแยกออกเป็นแบบต่างๆ ได้อีกมากมาย ขึ้นอยู่กับวัสดุที่ใช้ทําแกนดังแสดงในรูป (ค)

โดยปกติแล้วตัวเหนี่ยวนําประเภทนี้ทํามาจากขดลวดทองแดง โดยมีวัสดุที่ มีคุณสมบัติเป็นฉนวนเคลือบลวดตัวนํานี้ไว้ วัสดุเคลือบหรือ น้ํามันวานิชที่ใช้เคลือบลวดตัวนํานี้ช่วยป้องกันไม่ให้เกิดการลัดวงจร ทั้งนี้ เนื่องจากการพันขดลวดจะต้องพันซ้อนทับซึ่งกันและกันตัวเหนี่ยวนําชนิดค่าคงที่ ที่พบมากในตลาดมี 3 แบบ ดังแสดงในรูป ดังนี้
1.แบบแกนอากาศ
2.แบบแกนเหล็ก
3. แบบแกนเฟอร์ไรต์
ตัวเหนี่ยวนําชนิดปรับค่าได้
ค่าความเหนี่ยวนําจะถูกเปลี่ยนแปลงโดยการปรับตําแหน่งของแกน โดยสัมพันธ์กับขดลวดที่อยู่กับที่ ตัวเหนี่ยวนําชนิดปรับค่าได้แบบเฟอร์ไรต์ ดังแสดงในรูป เป็นเพียงชนิดเดียวที่ได้รับความนิยมในปัจจุบัน การเคลื่อนที่เข้าออกของแกนเฟอร์ไรต์จะปรับจากสกรู ถ้าแกนเคลื่อนที่ออกมานอกสุดจะทําให้ค่าความซาบซึมได้มีค่าต่ํา เนื่องจากการเหนี่ยวนําที่เกิดขึ้นเสมือนเกิดกับแกนอากาศ ดั่งนั้นค่าความเหนี่ยวนําจึงมีค่าต่ํา แต่ถ้าหมุนสกรูให้แกนเฟอร์ไรต์เคลื่อนที่เข้าไปในขดลวดมากขึ้น จะทําให้ค่าความซาบซึมที่ได้มีค่ามากขึ้น ส่งผลให้ค่าความเหนี่ยวนํามากขึ้นด้วย

 
ปัจจัยที่มีผลต่อค่าความเหนี่ยวนําค่าความเหนี่ยวนําถูกกําหนดโดย4ปัจจัยดังนี้
1.จํานวนรอบของขดลวด
2.พื้นที่ของขดลวด
3.ความยาวของขดลวด
4. วัสดุที่นํามาทําแกนภายในขดลวด
 
จํานวนรอบของขดลวดถ้าตัวเหนี่ยวนํามีจํานวนรอบของขดลวดมากขึ้น ดังแสดงในรูป สนามแม่เหล็กที่เกิดจากการไหลผ่านของ กระแสไฟฟ้าในขดลวดก็จะเกิดขึ้นมากด้วย สนามแม่เหล็กปริมาณมากนี้ จะทําให้เกิดแรงดันไฟฟ้าขึ้นในตัวเหนี่ยวนําที่เรียกว่า “Counter EMF หรือ Back EMF” และจากการที่มีเส้นแรงแม่เหล็กจํานวนมากตัดกับขดลวด จึงส่งผลให้ค่าความเหนี่ยวนํามากตามไปด้วย ดังนั้น ค่าความเหนี่ยวนํา (L) จึงเป็นสัดสัวนโดยตรงกับจํานวนรอบของขดลวด (N)

พื้นที่ของขดลวด
ถ้าพื้นที่ของขดลวดเพิ่มขึ้นสําหรับขดลวดที่มีจํานวนรอบใดๆ ดังแสดงในรูป จะทําให้เสนแรงแม่เหล็กมีจํานวนมากขึ้นด้วย และการมีสนามแม่เหล็กเพิ่มขึ้นจะทําให้ค่าความเหนี่ยวนําเพิ่มขึ้นตาม ดังนั้น ค่าความเหนี่ยวนํา (L) จึงเป็นสัดส่วนโดยตรงกับพื้นที่ของขดลวด (A)

ความยาวของขดลวดถ้าทําให้ขดลวดจํานวน 4 รอบ ขยายพื้นที่ออก (นั่นคือความยาวของขดลวดเพิ่มขึ้น) ดังแสดงในรูป ผลรวมของสนามแม่เหล็กที่เกิดขึ้นจากขดลวดแต่ละขดจะมีปริมาณลดลงในทางกลับกันถ้าขดลวดที่มีจํานวนเท่าเดิมนี้นํามาพันให้อยู่ชิดกันมากขึ้น (ความยาวของขดลวดสั้นลง) สนามแม่เหล็กที่เกิดจากขดลวดในแต่ละขดจะเสริมซึ่งกันและกัน ทําให้เกิดสนามแม่เหล็กที่มีปริมาณมากขึ้น ทําให้ค่าความเหนี่ยวนํามีค่ามากตามไปด้วย ดังนั้นค่าความเหนี่ยวนําจึงเป็นสัดสัวนผกผันกับความยาวของขดลวด
วัสดุที่นํามาทําแกนภายในขดลวด (u)ตัวเหนี่ยวนําส่วนมากมีแกนที่ทําจากวัสดุจําพวกนิกเกิล โคบอลต์ เหล็ก เฟอร์ไรตฺ หรืออัลลอย ซึ่งแกนเหล่านี้มีคุณสมบัติที่จะช่วยรวมหรือเพิ่มความเข้มของสนามแม่เหล็ก ดังนั้น ค่าความซาบซึมได้ (Permeability) จึงเป็นอีกปัจจัยหนึ่งที่มีผลต่อค่าความเหนี่ยวนํา โดยถ้าค่าความซาบซึมได้ของวัสดุที่ใช้ทําแกนมีค่ามาก ก็จะทําให้ค่าความเหนี่ยวนํามีค่ามากตามไปด้วย ดังแสดงในตารางแสดงตัวอย่างของวัสดุหลายชนิดที่นํามาใช้ทําแกน

 
สูตรการคํานวณหาค่าความเหนี่ยวนํา
จากป็จจัยทั้ง 4 ประการที่มีผลต่อค่าความเหนี่ยวนํา ดังนั้นจึงสามารถนํามาเขียนเป็นสูตรคํานวณหาค่าความเหนี่ยวนําได้ดังนี้

การต่อตัวเหนี่ยวนําตัวเหนี่ยวนําเป็นอุปกรณ์ที่ต้านการเปลี่ยนแปลงของกระแสไฟฟ้าในวงจร การต่อตัวเหนี่ยวนําจะมีรูปแบบการต่อเช่นเดียวกับการต่อตัวต้านทาน นั่นคือ ต่อแบบอนุกรมหรืออันดับ และต่อแบบขนาน กรณีนําตัวเหนี่ยวนําจํานวน 2 ตัว หรือมากกว่ามาต่อกันแบบอนุกรมจะเป็นการเพิ่มความยาวให้กับขดลวด และทําให้ค่าความเหนี่ยวนํารวมเพิ่มขึ้นและเมื่อทําการต่อตัวเหนี่ยวนําแบบขนานการหาค่าความเหนี่ยวนํารวมจะใช้วิธีคํานวณเช่นเดียวกับวิธีของตัวานทานโดยที่ค่าความเหนี่ยวนํารวมที่ได้ จะมีค่าน้อยกว่าค่าความเหนี่ยวนําของตัวเหนี่ยวนําที่มีค่าน้อยที่สุดในวงจร
 
การต่อตัวเหนี่ยวนําแบบอนุกรมหรืออันดับ
เมื่อตัวเหนี่ยวนําหลายๆ ตัวมาต่อกันแบบอนุกรม ค่าความเหนี่ยวนํารวมจะคํานวณได้จากการนําค่าความเหนี่ยวนําของตัวเหนี่ยวนําทุกตัวมารวมกัน

ตัวอย่าง
จงหาค่าความเหนี่ยวนํารวม (LT) ของวงจรที่แสดงในรูป

Resistor ตัวต้านทาน


Resistor ตัวต้านทาน

ตัวต้านทาน(Resistor)
ตัวต้านทานเป็นตัวที่ทําหน้าที่จํากัดกระแสไฟฟ้าที่ไหลในวงจรตามทีได้กําหนดเอาไว้ซึ่งจะมี
สัญลักษณ์ที่ใช้เป็น ( R ) และค่าความต้านทานมีหน่วยวัดทางไฟฟ้าเป็น ( )
ชนิดของตัวต้านทาน
ตัวต้านทานที่ใช้ในงานอิเล็กทรอนิกส์สามารถแบ่งออกเป็น 2 ชนิด ได้แก่ ตัวต้านทานชนิดค่าคงที่ (
Fixed Value Resistor ) และตัวต้านทานชนิดปรับค่าได้ ( Variable Value Resistor ) ซึ่งตัวต้านทานค่าคงที่นี้
จะมีค่าความต้านทานที่แน่นอน และเป็นค่าที่นิยมมากในงานด้านอิเล็กทรอนิกส์

สําหรับตัวต้านทานชนิดปรับค่าได้นั้น จะสามารถเลือกค่าความต้านทานที่ต้องการได้โดยการหมุนที่
ปุ่มปรับค่าความต้านทาน

                                              สัญลักษณ์ของตัวต้านทาน
ตัวต้านทานชนิดค่าคงที่แบ่งได้ดังนี้
ตัวต้านทานชนิดคาร์บอนผสม ( Carbon Composition Resistor)
ตัวต้านทานชนิดนี้จะนิยมใช้กันอย่างแพร่หลายซึ่งจะมีราคาถูก โครงสร้างภายในทําจากวัสดุซึ่งมี
คุณสมบัติเป็นตัวต้านทาน โดยที่ปลายทั้งสองข้างจะต่อลวดตัวนําออกมาและบริเวณผิวด้านนอกจะฉาบด้วย
ฉนวน มีรูปร่างเป็นทรงกระบอก

ขนาดของตัวต้านทานจะแสดงถึงกําลังงาน ซึ่งอยู่ในรูปของความร้อนที่สามารถแพร่กระจายออกมา
ได้ ความต้านทานทําหน้าที่จํากัดการไหลของกระแสไฟฟ้าหรืออิเล็กตรอน ดังนั้นสภาวะของการต้านทาน
หรือขัดขวางการไหลของกระแสไฟฟ้านี้จึงเป็นสาเหตุทําให้เกิดความร้อนขึ้น โดยปริมาณความร้อนที่
แพร่กระจายออกมาเมื่อเปรียนเทียบกับหน่วยเวลาจะมีหน่วยเป็น วัตต์ (Watts) และตัวต้านทานแต่ละตัวจะมี
ค่า อัตราทนกําลัง (Wattage Rating) เฉพาะที่แตกต่างกันออกไป โดยตัวต้านทานขนาดใหญ่จะสามารถที่จะ
แพร่กระจายความร้อนได้ดีกว่า เช่น ตัวต้านทานขนาดใหญ่มีอัตราการแพร่กระจายความร้อน 2 วัตต์ ในขณะ
ที่ความต้านทานตัวเล็กสามารถกระจายความร้อนในอัตราแค่ 1/8 วัตต์

ค่าความเคลื่อน เป็นปัจจัยที่จะต้องพิจารณาอีกประการหนึ่งที่จะต้องพิจารณา ซึ่งค่าความคลาดเคลื่อน
นี้เป็นปริมาณความผิดพลาดของค่าความต้านทานที่แตกต่างกันออกไปจากค่าที่กําหนดไว้ เช่น ค่าความ
ต้านทาน 1000 โอห์ม มีค่าความคลาดเคลื่อน 10 % ดังนั้นค่าความต้านทานที่วัดได้จะอยู่ระหว่าง 900 โอห์ม
และ 1100 โอห์ม
ตัวต้านทานชนิดฟิล์มคาร์บอน ( Carbon Film Resistor )
ตัวต้านทานชนิดนี้ถูกสร้างโดยการเคลือบแผ่นฟิล์มคาร์บอนที่มีคุณสมบัติของค่าความต้านทานลงบน
แกนเซรามิค ซึ่งทําหน้าที่เป็นฉนวน หลังจากนั้นให้ทําการตัดแต่งฟิล์มคาร์บอนที่ได้ให้เป็นรูปวงแหวนรอบ
แกนเซรามิค โดยถ้ามีอัตราส่วนของเนื้อคาร์บอนมีปริมาณมากกว่าฉนวนจะทําให้ค่าความต้านทานที่ได้มีค่า
ต่ํา แต่ถ้าฉนวนมีอัตราส่วนมากกว่าเนื้อของคาร์บอน ความต้านทานที่ได้ก็จะมีค่าสูง ตัวต้านทานแบบฟิล์ม
คาร์บอนจะมีค่าความคลาดเคลื่อนต่ํา และสามารถทนต่อการเปลี่ยนแปลงของอุณหภูมิสูงได้ โดยไม่ทําให้ค่า
ความต้านทานเปลี่ยนแปลงไป นอกจากนั้นสัญญาณรบกวนที่เกิดจากการใช้ตัวต้านทานชนิดนี้ก็มีค่าน้อย
กว่า เมื่อเปรียบเทียบกับตัวต้านทานชนิดคาร์บอนผสม



ตัวต้านทานชนิดฟิล์มโลหะ ( Metal Film Resistor)
ตัวต้านทานชนิดฟิล์มโลหะมีรูปร่างลักษณะ การสร้างทําได้โดยการพันฟิล์มโลหะใหัเป็นแผ่นบางๆ ลง
บนเซรามิครูปทรงกระบอก จากนั้นจึงตัดแผ่นฟิล์มนี้โดยให้มีส่วนที่เป็นแผ่นฟิล์มคั่นอยู่กับฉนวนซึ่งเป็น
เซรามิค ตัวต้านทานชนิดฟิล์มโลหะนี้จะมีค่าความคลาดเคลื่อนน้อยมาก และยังทนต่อการเปลี่ยนแปลง
อุณหภูมิภายนอกได้ดี นอกจากนี้ยังเกิดสัญญาณรบกวนได้น้อยเมื่อเทียบกับตัวต้านทานคาร์บอนชนิดอื่นๆ
ตัวต้านทานชนิดไวร์วาว์ด ( Wire wound Resistor )
โครงสร้างภายในของตัวต้านทานชนิดนี้เกิดจากพันขดลวดรอบๆ แกนเซรามิค ซึ่งทําหน้าที่เป็นฉนวน
จากนั้นจึงต่อเข้าด้วยลวดตัวนําจากส่วนหัวและท้ายออกมา สําหรับค่าความต้านทานสามารถเปลี่ยนแปลง
ได้โดยขึ้นอยู่กับความยาวและขนาดของขดลวดที่ใช้พัน
ตัวต้านทานแบบไวร์วาวด์ ส่วนมากนิยมใช้ในงานที่ต้องการค่าความต้านทานต่ําๆ ทั้งนี้เพื่อให้กระแส
ไหลผ่านได้ดี ดังนั้นการออกแบบจึงควรให้มีขนาดใหญ่เพื่อช่วยให้สามารถกระจายความร้อนได้มากกว่า ตัว
ต้านทานแบบไวร์วาวด์นี้จะมีค่าความคลาดเคลื่อนประมาณ 1 % แต่ด้วยโครงสร้างที่ใหญ่และขั้นตอนการ
ผลิตที่ยุ่งยากจึงทําให้ตัวต้านทานชนิดนี้มีราคาแพง
ตัวต้านทานชนิดออกไซด์ของโลหะ ( Metal Oxide Resistor)
ตัวต้านทานชนิดนี้มีโครงสร้างตัวต้านทานที่เคลือบด้วยออกไซด์โลหะ ประเภทดีบุกลงบนวัสดุที่ใช้เป็นฉนวน
โดยอัตราส่วนของออกไซด์โลหะมีคุณสมบัติเป็นตัวนําต่อฉนวน จะเป็นตัวกําหนดค่าความ
ต้านทานให้กับตัวต้านทานชนิดนี้ คุณสมบัติพิเศษสําหรับตัวต้านทานชนิดออกไซด์ของโลหะ คือ สามารถ
ทนต่อการเปลี่ยนแปลงอุณหภูมิได้
ตัวต้านทานชนิดแผ่นฟิล์มหนา ( Thick - Film Resistor )
ตัวต้านทานแบบฟิล์มหนามีอยู่ 2 แบบ คือ แบบ SIP (Single in - line Package ) และ DIP ( Dual in -
Line Package ) ตัวต้านทานแบบ SIP จะต่อลวดตัวนําออกจากความต้านทานภายในเพียงแถวเดียว ส่วนตัว
ต้านทานแบบ DIP จะมีลวดตัวนํา 2 แถว ต่อออกมาภายนอก ซึ่งตัวต้านทานแบบฟิล์มหนาทั้งสองแบบจะ
ได้รับการปรับแต่งให้ค่าความคลาดเคลื่อนประมาณ 2% โดยค่าความต้านทานที่ใช้ในงานทั่วไปของตัว
ต้านทานชนิดนี้อยู่ระหว่าง 22 โอห์ม ถึง 2.2 เมกะโอห์ม และมีอัตราทนกําลัง ประมาณ 1/2วัตต์
ตัวต้านทานชนิดปรับค่าได้ ( Variable Value Resistor )
การปรับปุ่มควบคุมระดับความดัง หรือ วอลลุม ( Volume ) ซึ่งอุปกรณ์ดังกล่าวนี้เป็นตัวอย่างของตัว
ต้านทานชนิดปรับค่าได้ประเภทหนึ่ง
ตัวต้านทานชนิดเปลี่ยนค่าได้โดยอาศัยกลไก ตัวต้านทานชนิดนี้เปลี่ยนค่าได้โดยอาศัยกลไกมีอยู่ 2 แบบ
ได้แก่
- รีโอสตัส ( Rheostat )
- โพเทนชิโอมิเตอร์ ( Potentiometer )
รีโอสตัส ( 2 ขั้ว : A และ B )
รูปลักษณะของรีโอสตัสแบบต่างๆ ดังรูป ก ส่วนสัญลักษณ์ของรีโอสตัส ดังแสดงในรูป ข ส่วนรูป ค
จะแสดงโครงสร้างภายในของรีโอสตัสแบบวงกลม ซึ่งจะเห็นว่าปลายอีกด้านหนึ่งของผิวสัมผัส เมื่อคันกรีด
เคลื่อนที่ออกห่างไปจากบริเวณส่วนที่ขั้วต่ออยู่ จะทําให้ความต้านทานเพิ่มขึ้น ซึ่งจะแสดงตามรูป ง ซึ่งคัน
กรีดจะเคลื่อนที่ต่ําลงโดยการหมุนแกนตามเข็มนาฬิกา
ด้วยเหตุนี้กระแสไฟฟ้าจึงไหลผ่านได้น้อยเนื่องจากค่าความต้านทานที่มีค่ามาก ในทางกลับกันถ้าคันกรีด
เคลื่อนที่เข้าใกล้ส่วนปลายที่มีขั้วต่ออยู่จะทําให้ค่าความต้านทานลดลง ดังแสดงในรูป จ ซึ่งคันกรีดจะ
เคลื่อนที่ขึ้นโดยการหมุนแกนทวนเข็มนาฬิกาและกระแสไฟฟ้าที่ไหลผ่านรีโอสตัสในกรณีนี้จะมีค่ามาก
เนื่องจากค่าความต้านทานที่ลดลงนั่นเอง
เทนชิโอมิเตอร์ ( 3 ขั้ว : A,B และ C )
รูปแสดงลักษณะภายนอกของโพเทนชิโอมิเตอร์แบบต่างๆ ซึ่งบางครั้งนิยมเรียกอุปกรณ์ชนิดนี้ว่า พอต
(Pot) ดังแสดงในรูป ข ความแตกต่างระหว่างโพเทนชิโอมิเตอร์และรีโอสตัส คือจํานวนขั้วต่อใช้งาน ซึ่ง
ขั้วต่อของโพเทนชิโอมิเตอร์จะมี 3 ขั้ว โดยการนําไปใช์งานสามารถต่อค่าความต้านทานได้ 3 แบบ ได้แก่
ระหว่าง A และ B (X) ระหว่าง B และ C (Y) และระหว่าง C และ A (Z) ส่วนที่เพิ่มเข้ามาที่ทําให้โพเทนชิโอ
มิเตอร์แตกต่างไปจากรีโอสตัส คือ ขั้วที่ 3 ที่ต่อเข้ากับปลายอีกด้านหนึ่งของแถบค่าความต้านทาน
                                             ตัวต้านทานแบบพิเศษ
ตัวต้านทานชนิดเปลี่ยนค่าโดยใช้ความร้อน
จากการที่ได้รู้จักกับตัวต้านทานชนิดเปลี่ยนค่าได้แบบรีโอสตัส และแบบโพเทนชิโอมิเตอร์ไปแล้ว ซึ่ง
ทั้งสองแบบจะเปลี่ยนแปลงค่าความต้านทานโดยอาศัยกลไกเพื่อหมุนแกนที่เชื่อมกับคันกรีด เพื่อไป
เปลี่ยนแปลงค่าความต้านทานภายใน แต่ยังมีอุปกรณ์อีกชนิดหนึ่งที่สามารถเปลี่ยนค่าความต้านทานได้โดย
อาศัยหลักการให้พลังงานความร้อนแทนซึ่งอุปกรณ์ชนิดนี้มีชื่อว่า เทอมิสเตอร์ (Thermister) แบ่งออกเป็น 2
ประเภทคือ
1. Positive temperrature control thremister (PCT) ถ้าอุณหภูมิสูงขึ้นค่าความต้านทานเทอมิสเตอร์ จะเพิ่มขึ้น
ตามด้วย ถ้าอุณหภูมิต่ําค่าความต้านทานเทอมิสเตอร์ จะลดตามด้วย
2. Negative temperrature control thremister (PCT) ถ้าอุณหภูมิสูงขึ้นค่าความต้านทาน
เทอมิสเตอร์ จะลดลง ถ้าอุณหภูมิต่ําค่าความต้านทานเทอมิสเตอร์ จะเพิ่มขึ้น
                           สัญลักษณ์ของเทอมิตเตอร์

ตัวต้านทานชนิดเปลี่ยนค่าได้โดยใช้แสง
อุปกรณ์โฟโตริซิสเตอร์ ( Photoresistor ) มีชื่อเรียกอีกอย่างหนึ่งว่า Light - Dependent Resistor ( LDR )
ซึ่งเป็นตัวต้านทานที่ทํางานโดยอาศัยแสงที่มาตกกระทบ นั่นคือ วัสดุที่ใช้ทําโฟโตริซิสเตอร์ เมื่อถูกแสงจะมี
ค่าความนํามากขึ้น หรือทําให้ค่าความต้านทานลดลงนั่นเอง โฟโตริซิสเตอร์สร้างจากวัสดุนําแสงที่มี
ลักษณะเป็นแผ่นบางๆ ซึ่งค่าความต้านทานของวัสดุนี้ลดลงเมื่อมีแสงมาตกกระทบ โดยพลังงานแสงจะถูก
ดูดซึมจากอะตอมที่มีอยู่มากมายในวัสดุนําแสงนี้และทําให้เกิดการปลดปล่อยอิเล็กตรอนที่อยู่วงนอกสุด (
Valence Electron ) ออกมา ด้วยเหตุผลของจํานวนอิเล็กตรอนอิสระมากขึ้น จึงทําให้กระแสไฟฟ้าสามารถ
ไหลผ่านโฟโตริซิสเตอร์ได้มาก ดังนั้นจึงทําให้ความต้านทานมีค่าลดลงด้วย
การนําอุปกรณ์โฟโตริซิสเตอร์ไปใช้งาน เช่น การนําไปใช้ในอุปกรณ์ปิดเปิด ไฟส่องสว่างภายนอกอาคาร
โดยใช้เวลาช่วงกลางวัน แสงสว่างจากดวงอาทิตย์จะทําให้ค่าความต้านทานของโฟโตริซิสเตอร์ไปลดลง
และค่าความต้านทานที่ลดลงนี้จะถูกนําไปใช้ในการปิดไฟส่องสว่าง ส่วนในช่วงเวลากลางคืนค่าความ
ต้านทานของโฟโตริซิสเตอร์จะเพิ่มขึ้น ไฟส่องสว่างจะเปิดอีกครั้ง
กําลังไฟฟ้า
กําลังไฟฟ้าในตัวต้านทานเกิดขึ้นเมื่อมีกระแสไหลผ่านตัวต้านทาน โดยกําลังไฟฟ้านี้จะมีหน่วย
เป็น วัตต์ (Watt) ซึ่งตัวต้านทาน ที่มีใช้กันก็มีขนาดตั้งแต่ 1/8 วัตต์ ไปจนถึงหลายร้อยวัตต์ ถ้าเราใช้ตัว
ต้านทานที่มีกําลังไฟฟ้าต่ํากว่ากําลังไฟฟ้าที่เกิดขึ้นจริงในวงจร ก็อาจจะทําให้ตัวต้านทานร้อนจนอาจะ
ไหม้ได้ แต่ในวงจรบางแบบก็ต้องการให้ความร้อนนี้เกิดขึ้นมา เช่น ในอุปกรณ์ทําความ ร้อนฮีทเตอร์(heater) ตัวกําเนิดความร้อนก็คือ ตัวต้านทานที่กําลังสูง ซึ่งทํามาจากลวดนิโครม กําลังไฟฟ้านี้จะเกิด
จาก เมื่อมีกระแสไฟฟ้าผ่านเส้นลวด แต่ในวงจรวิทยุความร้อนที่เกิดจากตัวต้านทานนั้นไม่ดี
เพราะฉะนั้น วงจรก็ต้องมีการเลือกตัวต้านทานให้มีอัตราทน กําลังไฟฟ้าให้เหมาะสมกับวงจร ในรูปที่
3 เป็นรูปของตัวต้านทานขนาดต่างๆ ที่สามารถพบได้ทั่วไป
เราจะรู้ค่าความต้านทานได้อย่างไร
ตัวต้านทานโดยทั่วไปจะมีการบอกค่าความต้านทานไว้เป็นแถบสี ซึ่งจะมีวิธีอ่านแถบสีดังในรูปที่
4 และในรูปที่ 5 เป็นตัวอย่าง ของค่าความต้านทานที่เราสามารถอ่านค่าได้ เป็นค่าตัวต้านทานมาตรฐาน
ที่มีขายอยู่ทั่วไป
การแสดงการอ่านค่าสีของตัวต้านทานแบบค่าคงที่โดยอ่านเรียงสีจากซ้ายไปขวา
เป็นตัวอย่างการอ่านค่าความต้านทานโดยอ่านจากซ้ายไปขวา
การต่อตัวต้านทานแบบต่าง ๆ
การต่อตัวต้านทานในวงจร สามารถทําได้ 2 แบบ ได้แก่ คือ การต่อแบบอันดับหรือ (แบบอนุกรม)
และการต่อขนาน
การต่อตัวต้านทานแบบอันดับหรืออนุกรม(Series)
ค่าความต้านทานรวมที่เกิดจากนําตัวต้านทานมาต่อกันแบบอันดับจะมีค่าเท่ากับผลรวมของ ค่า
ความต้านทานของตัวต้านทานทุกตัวรวมกัน สูตรที่ใช้ในการคํานวณหาค่าความต้านทานที่ต่อกันแบบ
อันดับ

ตัวอย่าง
จากวงจรในรูป จงคํานวณหาค่าความต้านทานรวม

ไดโอด diode


ไดโอด diode

ไดโอด (diode)
ไดโอดเป็นส่วนสําคัญส่นหนึ่งของวงจรอิเลคทรอนิคส์ทั่วไปในสมัยก่อนไดโอดมักจะเป็นแบบหลอดสุญญากาศปัจจุบันความก้าวหน้าทางเทคโนโลยีเป็นไปอย่างรวดเร็วทําให้สิ่งประดิษฐ์ชนิดใหม่ ซึ่งทําด้วยสารกึ่งตัวนําได้เข้ามาแทนที่หลอดสุญญากาศไดโอดที่ทํามาจากสารกึ่งตัวนํามีสองขั้วและมีขนาดเล็กใช้งานได้ง่าย
ชนิดของไดโอด
ไดโอดที่ทําจากสารกึ่งตัวนําแบ่งได้ตามชนิดของเนื้อสารที่ใช้ เช่นเป็นชนิดเยอรมันเนียมหรือเป็นชนิดซิลิกอนนอกจากนี้ไดโอดยังแบ่งตามลักษณะตามกรรมวิธีที่ผลิตคือ1. ไดโอดชนิดจุดสัมผัส (Point-contact diode) ไดโอดชนิดนี้เกิดจากการนําสารเยอรมันเนียมชนิด N
มาแล้วอัดสายเล็กๆซึ่งเป็นลวดพลาตินั่ม(Platinum) เส้นหนึ่งเข้าไปเรียกว่าหนวดแมวจากนั้นจึงให้กระแสค่าสูงๆไหลผ่านรอยต่อระหว่างสายและผลึกจะทําให้เกิดสารชนิดP ขึ้นรอบ ๆ รอยสัมผัสในผลึก
เยอรมันเนียมดังรูป

                      ไดโอดชนิดจุดสัมผัส
2. ไดโอดชนิดหัวต่อ P-N (P-N junction diode) เป็นไดโอดที่สร้างขึ้นจากการนําสารกึ่งตัวนําชนิด N
มาแล้วแพร่อนุภาคอะตอมของสารบางชนิดเข้าไปในเนื้อสาร P ขึ้นบางส่วน แล้วจึงต่อขั้วออกใช้งาน
ไดโอดชนิดนี้มีบทบาทในวงจรอิเลคทรอนิคส์ และมีที่ใช้งานกันอย่างแพร่หลาย

 ไดโอดชนิดหัวต่อ P-N
คุณสมบัติของไดโอด

ไดโอดที่ใช้ในวงจรมีสัญลักษณ์ เป็นรูปลูกศรมีขีดขวางไว้ดังรูป
ตัวลูกศรเป็นสัญลักษณ์แทนสารกึ่งตัวนําชนิด P ซึ่งเป็นขั้วอาโนด (ขั้วบวก) ของไดโอด
ลูกศรจะชี้ในทิศทางที่โฮลเคลื่อนทิศส่วนขีดคั่นเป็นสารกึ่งตัวนําชนิด N ซึ่งเป็นขั้วคาโถด (ขั้วลบ)
ดังนั้นเราจะสามารถพิจารณาว่า ไดโอดถูกไบแอสตรงหรือไบแอสกลับได้ง่าย ๆ โดยพิจารณาดูว่า
ถ้าขั้วอาโนดมีศักดาไฟฟ้าเป็นบวกมากกว่าราคาโถดแล้ว ไดโอดจะถูกไบแอสตรง ถ้าขั้วอาโนดมี
ศักดาไฟฟ้าเป็นบวกน้อยกว่า คาโถดก็แสดงว่าไดโอดถูกไบแอสกลับ
ไบแอสตรงไบแอสกลับ
1. มีกระแสไหลผ่านไดโอด1. มีกระแสไหลผ่านไดโอด
2. ถือว่าไดโอดมีความต้านทานน้อยมาก2. ถือว่าไดโอดมีความต้านทานสูงมาก
3. โดยทั่วไปถือว่าไดโอดลัดวงจร3. โดยทั่วไปถือว่าไดโอดเป็ดวงจร
เปรียบเทียบลักษณะสมบัติของไดโอดเมื่อไบแอสตรงและไบแอสกลับ

ลักษณะสมบัติของไดโอดอุดมคติ
 ความต้านทานของตัวไดโอด
เนื่องจากความต้านทานของตัวไดโอด ขึ้นอยู่กับทิศทางการไหลของกระแสไฟฟ้า ดังนั้นจึง
ถือว่า สิ่งประดิษฐ์ ไดโอดมีคุณสมบัติไม่เป็นเชิงเส้น ลักษณะ : สมบัติระหว่างแรงดันและกระแสจะ
เป็นตัวแสดงให้เห็นความสัมพันธ์ของกระแสที่ไหลผ่านตัวไดโอด (ID) กับค่าแรงดันที่ตกคร่อมตัว
ไดโอด (VD) ทั้งในทิศทางไบแอสตรง และไบแอสกลับดังรูป

ลักษณะ สมบัติทางด้านไบแอสตรงจะเริ่มมีกระแสไหลผ่านไดโอดเมื่อใส่แรงดันแก่ไดโอด
ด้วยค่า ๆ หนึ่งแรงดันนี้คือค่าแรงดันที่เราเรียกว่า แรงดันคัทอิน (cut in voltage) ของไดโอด

กราฟลักษณะสัมบัติระหว่างแรงดันและกระแสของวงจรไบแอส
เนื่องจากไดโอดชนิดหัวต่อ P-N แบ่งเป็น 2 ชนิดคือชนิดซิลิกอนและชนิดเยอรมันเนียม
ดังนั้นลักษณะสมบัติทางแรงดันและกระแสของไดโอดทั้งสองชนิด จะเห็นได้ชัดดังในรูป

 แรงดันคร่อมตัวไดโอดด้านไบแอสตรง
ค่ากระแสอิ่มตัวย้อนกลับสําหรับซิลิกอนไดโอดกับของเยอรมันเนียมไดโอดยังมีค่าไม่เท่ากันด้วยซิลิกอนไดโอดมีค่ากระแสอิ่มตัวน้อยกว่าของเยอรมันเนียมไดโอดประมาณ 1000 เท่า
สําหรับค่าแรงดันคัทอินทั้งของซิลิกอนและเยอรมันเนียมจะมีค่าไม่เท่ากัน ค่าแรงดันคัทอิน
ของซิลิกอนไดโอดมีค่าประมาณ 0.6 โวลท์ ส่วนของเยอรมันเนียมไดโอดมีค่าประมาณ 0.2 โวลท์
คุณลักษณะสมบัติระหว่างแรงดันและกระแสของไดโอด
ความต้านทานในตัวไดโอดพอที่จะแบ่งออกตามชนิดของแรงดันที่ให้กับตัวไดโอด ซึ่งแยก
ออกเปนความต้านทานทางไฟตรงหรือทางสรรคติกและความต้านทานไฟสลับ
ความต้านทานทางไฟตรง (static resistance)
จากลักษณะสมบัติแรงดันและกระแสของไดโอดจะไม่เป็นลักษณะเชิงเส้น ดังนั้นความต้านทานใน
ตัวไดโอดจึงไม่คงที่ จากกฎของโอห์มจะได้ความต้านทานทางไฟตรง ที่จะงดทํางานขณะไม่มีสัญญาณอื่น
ใดเข้ามาเป็น

แสดงค่าความต้านทานในไดโอดทางไฟตรง
ความต้านทานทางไฟสลับ (dynamic resistance) เมื่อไดโอดทํางานในขณะที่มีค่าสัญญาณ
แรงดันไฟสลับขนาดเล็ก ๆ ป้อนเข้ามาค่าความต้านทานที่เกิดขึ้นที่ไดโอดจะเกิดการเปลี่ยนแปลงตลอดเวลา
ค่าความต้านทานนี้จะแตกต่างจากความต้านทานทางไฟตรงเราเรียกค่าความต้านทานนี้ว่า ความต้านทาน
ทางไฟสลับการหาค่าความต้านทานทางไฟสลับหาค่าได้จากค่าอัตราส่วนการเปลี่ยนแปลงของแรงดันคร่อม
ตัวไดโอดที่เปลี่ยนไปกับค่าการเปลี่ยนแปลงของกระแสที่ไหลในตัวไดโอด เนื่องจากการทํางานของไดโอด
เมื่อมีสัญญาณเข้ามา ณ จุดที่ไดโอดทํางานก็จะมีค่าไม่คงที่ไม่แน่นอน เกิดการเปลี่ยนแปลงตามลักษณะ
สมบัติ แต่เมื่อคิดการเปลี่ยนแปลงกระแสไบแอสตรงค่าเล็ก ๆ ของกระแสและแรงดันแล้วจะสามารถหาค่า
ความต้านทานทางไดนามิคหรือความต้านทานต่อไฟสลับได้ดังรูป

แสดงการหาความต้านทานทางไฟสลับ
การหาค่าความต้านทานนี้อาจทําได้โดยการใช้สูตร Rac เท่ากับ
= ช่วงการเปลี่ยนแปลงของแรงดันคร่อมไดโอด
ช่วงการเปลี่ยนแปลงของกระแสที่ไหลผ่านไดโอด
ผลกระทบของอุณหภูมิ (Temperature Effects)
จากการทดลองพบว่า Is ของ Si จะมีค่าเพิ่มขึ้นเกือบ 2 เท่า ทุกๆ ครั้งที่อุณหภูมิเพิ่มขึ้น 10 องศา
เซลเซียส ขณะที่ Ge ม ีค่า Is เป็น 1 หรือ 2 micro-amp ที่ 25 องศาเซลเซียส แต่ที่ 100 องศาเซลเซียส
จะมีค่า Is เพิ่มขึ้นเป็น 100 micro-amp ระดับกระแสไฟฟ้าขนาดนี้จะเป็นปัญหาต่อการเปิดวงจรเรื่อง
จากได้รับการไบอัสกลับ เพราะแทนที่ Id จะมีค่าใกล้เคียงศูนย์ แต่กลับนํากระแสได้จํานวนหนึ่ง
ตามอุณหภูมิที่เพิ่มขึ้น

ซีเนอร์ไดโอด (Zener diode) ไดโอดธรรมดาเมื่อทําการไบรแอสกลับจนถึงค่าแรงดันพังจะ
ทําให้เกิดการเสียหายได้ ซีเนอร์ไดเอดเป็นซิลิกอนไดโอดชนิดพิเศษที่กระแสย้อนกลับสามารถไหล
เฉลี่ยทั่วพื้นที่รอยต่อของไดโอด จึงสามารถทนกระแสย้อนกลับได้สูงมาก ดังนั้นซีเนอร์ไดโอดจึง
สามารถใช้ควบคุมแรงดันโดยใช้แรงดันที่ตกคร่อมตัวมันเองเป็นตัวควบคุมสัญลักษณ์ของตัวซี
เนอร์ไดโอดเขียนได้ดังรูป

 สัญญลักษณ์ของซีเนอร์ไดโอด
ซีเนอร์ไดโอดทางอุดมคติจะควบคุมแรงดันได้ต่อเมื่อถูกไบแอสกลับกล่าวคือ จะมีกระแส
ไหลผ่านไดโอดได้ดีต่อเมื่อไบแอสกลับจนถึงค่าแรงดันซีเนอร์เท่านั้น สําหรับกรณีไบแอสตรงซี
เนอร์ไดโอดจะทําหน้าที่เหมือนไดโอดธรรมดาคือเสมือนเป็นตัวลัดวงจร

ลักษณะสมบัติของซีเนอร์ไดโอดทางอุดมคติ ลักษณะสมบัติของซีเนอร์ไดโอดจริง ๆ

ตัวเก็บประจุ,คาปาซิเตอร์ (Capacitor)


ตัวเก็บประจุ,คาปาซิเตอร์ (Capacitor)

ตัวเก็บประจุ,คาปาซิเตอร์ (Capacitor)
ตัวเก็บประจุ , คาปาซิเตอร์ (Capacitor) หรือ ตัว C ที่เรานิยมเรียกกัน ตัวเก็บประจุจะทําหน้าที่เก็บ
ประจุไฟฟ้าและคายประจุไฟฟ้า โดยจะว่าไปแล้วตัวเก็บประจุทําหน้าที่คล้ายกับแบตเตอรี่ แต่จะเก็บ
กระแสไฟฟ้า ได้น้อยกว่าและจะจ่ายกระแสไฟฟ้าไฟฟ้าได้เร็ว กว่า
โดยตามโครงสร้างแล้วตัวเก็บประจุจะประกอบด้วยแผ่นตัวนําวางประกบกันโดยเว้นระยะห่างของ
แผ่นตัวนําโดยภายในจะมีสารไดอิเล็กตริกอยู่ เราจึงนิยมมักเห็นตัวเก็บประจุอยู่ในวงจร
อิเล็กทรอนิกส์เสมอ นอกจากเราจะใช้ตัวเก็บประจุ เก็บและคายประจุให้วงจรอิเล็กทรอนิกส์แล้วเรา
ยังใช้ตัวเก็บประจุ ในวงจรกรองความถี่ได้อีกด้วย หน่วยของตัวเก็บประจุเรียก ว่า F (ฟารัส)
10uF(10ไมโครฟารัส) 0.01uF (0.01ไมโครฟารัส) เป็นต้น ซึ่งการอ่านค่าและ การแปลงหน่วยจะ
กล่าวถึงในส่วนต่อไป

ชนิดของตัวเก็บประจุ
ตัวเก็บประจุเองนั้นสามารถแบ่งออกได้หลายชนิดเช่น แบ่งตามการใช้งานตามขั้วไฟฟ้าจะมีตัวเก็บ
ประจุแบบมีขั้ว ( คือต้องต่อให้ถูกขั้วจึงจะทํางาน) และตัวเก็บประจุไม่มีขั้ว(จะต่อแบบใดก็ได้)
หรือจะแบ่งตามชนิดโครงสร้างก็สามารถแบ่งออกได้หลายแบบ เช่น ตัวเก็บประจุอิเล็กทรอไลท์ ตัว
เก็บประจุเซรามิค ตัวเก็บประจุแทนทาลั่ม ตัวเก็บประจุโพลีเอสเตอร์ เป็นต้น
หรือแบ่งตามการเปลี่ยนแปลงค่า สามารถแบ่งเป็นตัวเก็บประจุแบบค่าคงที่ ตัวเก็บประจุเปลี่ยนค่า
ได้(พบมากในเครื่องรับวิทยุ) และตัวเก็บประจุที่เลือกค่าได้(มีหลายตัวอยู่ในตัวเดียวกัน นอกจากนี้
ยังมีอีกมากมายแต่ในที่นี้จะขอยกตัวอย่างรูปร่างและการใช้งานพื้นฐานของตัวเก็บประจุที่เรามักจะ
พบเห็นเสมอในวงจรอิเล็กทรอนิกส์
ตัวเก็บประจุอิเล็กทรอไลท์
ตัวเก็บประจุชนิดนี้จะมีค่าความจุอยู่ในช่วง1 uF -
30,000 uFขึ้นไป และมีการใช้งานที่ แรงดัน ตามที่ระอยู่บนตัวมันอยู่แล้วเช่น 10V , 16V , 25V
,50V 100V เรานิยมใช้ตัวเก็บประจุชนิดนี้ในวงจรทั่วไป ตัวเก็บประจุ ชนิดนี้มีใช้ทั้งแบบมีขั้ว และ
ไม่มีขั้วค่าความจุ และแรงดันใช้งาน จะพิมพ์ตัวเก็บประจุเลย และจะมีแถบสีขาวด้านข้างซึ่งจะ
แสดง ตําแหน่งขาลบ(-) ของตัวเก็บประจุ
ตัวเก็บประจุเซรามิค
ตัวเก็บประจุชนิดนี้จะมีขนาดเล็ก ไม่มีขั้ว ค่าความจุต่ํา อยู่ในช่วง พิโก - นาโน (pF - nF ) การระบุค่าของตัว เก็บประจุจะเขียนเป็น code (ศึกษาการอ่านค่าใน
ส่วนล่าง) และไม่ค่อยระบุการใช้ แรงดัน แต่ปกติจะ ใช้แรงดันที่ 50V 100V 1000V ขึ้นอยู่กับขนาด
ของมันหรือสอบถามจาก พนักงานขายได้ ปกติแล้ว ตัวเก็บประจุชนิดนี้จะใช้ในงานกรองความถี่
พบมากในพวกเครื่องรับ-ส่ง และวงจรทั่วไป
ตัวเก็บประจุโพลีเอสเตอร์ (ไมล่า)
ตัวเก็บประจุชนิดนี้จะมีขนาดใหญ่ชึ้นมา เป็นตัว
เก็บประจุแบบไม่มีขั้ว ค่าความจุจะสูงกว่าแบบ เซรามิคขึ้นมา อาจจะอยู่ในช่วง นาโน -10 ไมโคร
(nF - 10uF ) และการใช้งานจะอยู่ที่ 50V , 100V หรือมากกว่า การอ่านค่าจะเขียนอยู่ในรูปแแบบ
code การใช้งานจะคล้ายกับตัวเก็บประจุแบบเซรามิค
ตัวเก็บประจุโพลี
ตัวเก็บประจุชนิดนี้อาจแบ่งได้หลายแบบเช่น โพลีเอสเตอร์ โพลี
คาร์บอนเนต โพลีโพไฟลีน ซึ่งรายละเอียดจะหามาลงในบทความต่อไป ค่าความจุจะอยู่ในช่วง นา
โน - ไมโคร เช่นเดียวกับ ตัวเก็บประจุไมล่าการใช้งานแรงดัน อยู่ในช่วง 50V - 100 V หรือมากกว่า
ซึ่ง จะเขียนติดไว้ที่ตัวเก็บประจุอยู่แล้วและค่าตัวเก็บประจุ จะพิมพ์อยู่บนตัวเก็บประจุเลย โดย
อาจจะเป็นค่า pF หรือ uF ขึ้นอยู่กับค่าความจุในการใช้งานส่วนมากจะใช้งานในระบบเสียง เสียง
เครื่องเสียง ระบบความคุม เป็นต้น
ตัวเก็บประจุแทนทาลั่ม
ตัวเก็บประจุชนิดนี้จะมีทั้งแบบมีขั้ว และไม่มีขั้วมีขนาดเล็ก
ความความจะอยู่ในช่วง 1-100uF ราคาสูงใช้แทนตัวเก็บประจุอิเล็กทรอไลท์
—————————————————————————————–
การอ่านค่าตัวเก็บประจุ และการแปลงค่าของตัวเก็บประจุ
ดังที่กว่าไปแล้วว่าหน่วยของตัวเก็บประจุคือ F (ฟารัส) แต่ตัวเก็บประจุที่ใช้ในวงจรอิเล็กทรอนิกส์
ส่วนใหญ่ จะมีค่าต่ําๆเป็น u(ไมโคร) n(นาโน) p(พิโก) ซึ่งหน่วยดังกล่าวสามารถแปลงกลับไป
กลับมาได้ เช่น หากไปซื้อตัวเก็บประจุแล้วทาง ร้านบอกค่ามาเป็น n(นาโน) เราก็สามารถแปลงเป็น
p(พิโก) ได้ หรือ การอ่านค่าตัวเก็บประจุบางชนิดซึ่งอาจจะอ่านเป็นค่า n(นาโน) เราก็สามารถแปลง
มาเป็น p(พิโก) หรือ u(ไมโคร) ได้การเทียบหน่วยของตัวเก็บประจุ
1 ฟารัส (1F) = 1,000,000 ไมโครฟารัส (1,000,000uF)
1 ไมโครฟารัส(1uF) = 1,000 นาโนฟารัส(1,000nF)
1 นาโนฟารัส (1nF) = 1,000 พิโกฟารัส(1,000pF)
การอ่านค่าตัวเก็บประจุแบบต่างๆ โดยทั่วไปแล้วตัวเก็บประจุชนิด เซรามิก หรือ ไมล่า จะเขียน
โคด(code) รหัสแสดงการบอกค่าความจุของตัวเก็บประจุ โดยจะแสดงในรูปของจํานวนตัวเลข 3
ตัว เช่น 103 ในการแปลงค่า2หลักแรก(10) จะเป็นค่าคงที่ ส่วนหลักที่ 3(3) จะแทนจํานวนเลข ศูนย์(0)
เท่ากับจํานวนนั้น และหน่วยที่ทําการ อ่านจากรหัสเหล่านี้จะเป็น พิโก (p) เสมอ เช่น
103 จะเขียนเป็น 10,000pF
221 จะเขียนเป็น 220pF
253 จะเขียนเป็น 25,000pF เป็นต้น
จากนั้นเราก็จะเแปลงเป็นหน่วยอื่นได้ตามที่ต้องการ
แต่จะมีวีแปลงจากรหัสเหล่านี้ไปอยู่ในรูปของ ไมโคร (uF) ได้โดยเราจะมองที่หลักสุดท้ายคือ
ลงท้ายด้วย 1 จะเป็น 0.000 เช่น 231 จะเป็น 0.00023uF (230pF)
ลงท้ายด้วย 2 จะเป็น 0.00 เช่น 232 จะเป็น 0.0023uF (2300pF)
ลงท้ายด้วย 3 จะเป็น 0.0 เช่น 233 จะเป็น 0.023uF (23000pF)
ลงท้ายด้วย 4 จะเป็น 0. เช่น 234 จะเป็น 0.23uF(230000pF)
** แต่ในตัวเก็บประจุเซรามิคอาจจะเป็นตัวเลขตัวเดียว เช่น 1 2 แสดงถึงค่า 1pF 2PF ได้เลย


ที่มา : http://www.english.thaiio.com/%E0%B8%95%E0%B8%B1%E0%B8%A7%E0%B9%80%E0%B8%81%E0%B9%87%E0%B8%9A%E0%B8%9B%E0%B8%A3%E0%B8%B0%E0%B8%88%E0%B8%B8%E0%B8%84%E0%B8%B2%E0%B8%9B%E0%B8%B2%E0%B8%8B%E0%B8%B4%E0%B9%80%E0%B8%95%E0%B8%AD%E0%B8%A3/